426 research outputs found

    "Animated ghost- A librarian won't ghost you" poster

    Get PDF
    These posters were created to encourage students to ask a librarian for help with essays or other assignments

    Valentine's Day "conversation hearts" posters

    Get PDF
    These posters were created to encourage students to utilized resources available to them through BU Libraries

    "Black and red" @BULIBRARIES posters

    Get PDF
    These posters were created to encourage BU students to utilize resources available to them through BU Libraries

    Learning Feature Matching via Matchable Keypoint-Assisted Graph Neural Network

    Full text link
    Accurately matching local features between a pair of images is a challenging computer vision task. Previous studies typically use attention based graph neural networks (GNNs) with fully-connected graphs over keypoints within/across images for visual and geometric information reasoning. However, in the context of feature matching, considerable keypoints are non-repeatable due to occlusion and failure of the detector, and thus irrelevant for message passing. The connectivity with non-repeatable keypoints not only introduces redundancy, resulting in limited efficiency, but also interferes with the representation aggregation process, leading to limited accuracy. Targeting towards high accuracy and efficiency, we propose MaKeGNN, a sparse attention-based GNN architecture which bypasses non-repeatable keypoints and leverages matchable ones to guide compact and meaningful message passing. More specifically, our Bilateral Context-Aware Sampling Module first dynamically samples two small sets of well-distributed keypoints with high matchability scores from the image pair. Then, our Matchable Keypoint-Assisted Context Aggregation Module regards sampled informative keypoints as message bottlenecks and thus constrains each keypoint only to retrieve favorable contextual information from intra- and inter- matchable keypoints, evading the interference of irrelevant and redundant connectivity with non-repeatable ones. Furthermore, considering the potential noise in initial keypoints and sampled matchable ones, the MKACA module adopts a matchability-guided attentional aggregation operation for purer data-dependent context propagation. By these means, we achieve the state-of-the-art performance on relative camera estimation, fundamental matrix estimation, and visual localization, while significantly reducing computational and memory complexity compared to typical attentional GNNs

    ResMatch: Residual Attention Learning for Local Feature Matching

    Full text link
    Attention-based graph neural networks have made great progress in feature matching learning. However, insight of how attention mechanism works for feature matching is lacked in the literature. In this paper, we rethink cross- and self-attention from the viewpoint of traditional feature matching and filtering. In order to facilitate the learning of matching and filtering, we inject the similarity of descriptors and relative positions into cross- and self-attention score, respectively. In this way, the attention can focus on learning residual matching and filtering functions with reference to the basic functions of measuring visual and spatial correlation. Moreover, we mine intra- and inter-neighbors according to the similarity of descriptors and relative positions. Then sparse attention for each point can be performed only within its neighborhoods to acquire higher computation efficiency. Feature matching networks equipped with our full and sparse residual attention learning strategies are termed ResMatch and sResMatch respectively. Extensive experiments, including feature matching, pose estimation and visual localization, confirm the superiority of our networks
    • …
    corecore